Multi-instance multi-label learning for multi-class classification of whole slide breast histopathology images

Date

2018

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Medical Imaging

Print ISSN

0278-0062

Electronic ISSN

Publisher

Institute of Electrical and Electronics Engineers

Volume

37

Issue

1

Pages

316 - 325

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
4
views
64
downloads

Series

Abstract

Digital pathology has entered a new era with the availability of whole slide scanners that create the high-resolution images of full biopsy slides. Consequently, the uncertainty regarding the correspondence between the image areas and the diagnostic labels assigned by pathologists at the slide level, and the need for identifying regions that belong to multiple classes with different clinical significances have emerged as two new challenges. However, generalizability of the state-of-the-art algorithms, whose accuracies were reported on carefully selected regions of interest (ROIs) for the binary benign versus cancer classification, to these multi-class learning and localization problems is currently unknown. This paper presents our potential solutions to these challenges by exploiting the viewing records of pathologists and their slide-level annotations in weakly supervised learning scenarios. First, we extract candidate ROIs from the logs of pathologists' image screenings based on different behaviors, such as zooming, panning, and fixation. Then, we model each slide with a bag of instances represented by the candidate ROIs and a set of class labels extracted from the pathology forms. Finally, we use four different multi-instance multi-label learning algorithms for both slide-level and ROI-level predictions of diagnostic categories in whole slide breast histopathology images. Slide-level evaluation using 5-class and 14-class settings showed average precision values up to 81% and 69%, respectively, under different weakly labeled learning scenarios. ROI-level predictions showed that the classifier could successfully perform multi-class localization and classification within whole slide images that were selected to include the full range of challenging diagnostic categories.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)