Multi-instance multi-label learning for multi-class classification of whole slide breast histopathology images
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Digital pathology has entered a new era with the availability of whole slide scanners that create the high-resolution images of full biopsy slides. Consequently, the uncertainty regarding the correspondence between the image areas and the diagnostic labels assigned by pathologists at the slide level, and the need for identifying regions that belong to multiple classes with different clinical significances have emerged as two new challenges. However, generalizability of the state-of-the-art algorithms, whose accuracies were reported on carefully selected regions of interest (ROIs) for the binary benign versus cancer classification, to these multi-class learning and localization problems is currently unknown. This paper presents our potential solutions to these challenges by exploiting the viewing records of pathologists and their slide-level annotations in weakly supervised learning scenarios. First, we extract candidate ROIs from the logs of pathologists' image screenings based on different behaviors, such as zooming, panning, and fixation. Then, we model each slide with a bag of instances represented by the candidate ROIs and a set of class labels extracted from the pathology forms. Finally, we use four different multi-instance multi-label learning algorithms for both slide-level and ROI-level predictions of diagnostic categories in whole slide breast histopathology images. Slide-level evaluation using 5-class and 14-class settings showed average precision values up to 81% and 69%, respectively, under different weakly labeled learning scenarios. ROI-level predictions showed that the classifier could successfully perform multi-class localization and classification within whole slide images that were selected to include the full range of challenging diagnostic categories.