Homotopy colimits and decompositions of function complexes

buir.advisorYalçın, Ergün
dc.contributor.authorÇakar, Adnan Cihan
dc.date.accessioned2016-07-21T13:19:05Z
dc.date.available2016-07-21T13:19:05Z
dc.date.copyright2016-07
dc.date.issued2016-07
dc.date.submitted2016-07-20
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionIncludes bibliographical references (leaves 61).en_US
dc.description.abstractGiven a functor F : C→ GSp, the homotopy colimit hocolimCF is defined as the diagonal space of simplicial replacement of F. Let G be a finite group and F be a family of subgroups of G, the classifying space EFG can be taken as the homotopy colimit hocolimOF G(G/H) over the orbit category OFG. For G-spaces X and Y , let mapG(X, Y ) be the space formed by G-simplicial maps from X to Y . Given a functor F : C→ GSp and a G-space Y , there is an isomorphism mapG(hocolimCF , Y ) ∼= holimC(mapG(F, Y )) [1]. We give a proof for this isomorphism by writing explicit simplicial maps in both directions. As an application we show that the generalized homotopy fixed points set Y hF G := mapG(EFG, Y ) of a G-space Y can be calculated as the homotopy limit holimH∈OF GY H. Topological version of this is recently proved by D. A. Ramras in [2]. We also give some other applications of this isomorphism.en_US
dc.description.statementofresponsibilityby Adnan Cihan Çakar.en_US
dc.format.extentvii, 61 leaves.en_US
dc.identifier.itemidB153649
dc.identifier.urihttp://hdl.handle.net/11693/30153
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHomotopy colimiten_US
dc.subjectClassifying spaceen_US
dc.subjectSimplicial seten_US
dc.subjectHomotopy limiten_US
dc.subjectFunction complexesen_US
dc.titleHomotopy colimits and decompositions of function complexesen_US
dc.title.alternativeHomotopi eşlimitler ve fonksiyonlar komplekslerinin ayrışımlarıen_US
dc.typeThesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10118528.pdf
Size:
403.79 KB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: