Fundamental structure of Fresnel diffraction: natural sampling grid and the fractional Fourier transform

Date

2011-06-29

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Optics Letters

Print ISSN

0146-9592

Electronic ISSN

Publisher

Optical Society of America

Volume

36

Issue

13

Pages

2524 - 2526

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
3
views
20
downloads

Series

Abstract

Fresnel integrals corresponding to different distances can be interpreted as scaled fractional Fourier transformations observed on spherical reference surfaces. We show that by judiciously choosing sample points on these curved reference surfaces, it is possible to represent the diffracted signals in a nonredundant manner. The change in sample spacing with distance reflects the structure of Fresnel diffraction. This sampling grid also provides a simple and robust basis for accurate and efficient computation, which naturally handles the challenges of sampling chirplike kernels.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)