Human movement personality detection parameters

buir.contributor.authorSonlu, Sinan
buir.contributor.authorDoğan, Yalim
buir.contributor.authorErguzen, Arçin Ülkü
buir.contributor.authorÜnalan, Musa Ege
buir.contributor.authorDemirci, Serkan
buir.contributor.authorGüdükbay, Uğur
buir.contributor.orcidDogan, Yalım|0000-0002-0814-2439
buir.contributor.orcidErgüzen, Arçin Ülkü|0009-0007-4755-8617
buir.contributor.orcidDemirci, Serkan|0000-0002-4753-2069
dc.contributor.authorSonlu, Sinan
dc.contributor.authorDogan, Yalım
dc.contributor.authorErgüzen, Arçin Ülkü
dc.contributor.authorÜnalan, Musa Ege
dc.contributor.authorDemirci, Serkan
dc.contributor.authorDurupinar, Funda
dc.contributor.authorGüdükbay, Uğur
dc.coverage.spatialMersin, Turkiye
dc.date.accessioned2025-02-22T13:57:25Z
dc.date.available2025-02-22T13:57:25Z
dc.date.issued2024-06-23
dc.departmentDepartment of Electrical and Electronics Engineering
dc.descriptionConference Name:32nd IEEE Signal Processing and Communications Applications Conference (SIU)
dc.descriptionDate of Conference:MAY 15-18, 2024
dc.description.abstractIn this study, we develop a system that detects apparent personality traits from animation data containing human movements. Since the datasets that can be used for this purpose lack sufficient variance, we determined labels for the samples in two datasets containing human animations, in terms of the Five Factor Personality Theory, with the help of a user study. Using these labels, we identified movement parameters highly dependent on personality traits and based on Laban Movement Analysis categories. The artificial neural networks we trained for personality analysis from animation data show that models that take the motion parameters determined in the study as input have a higher accuracy rate than models that take raw animation data as input. Therefore, using the parameters determined in this study to evaluate human movements in terms of their personality traits will increase the systems' success.
dc.description.provenanceSubmitted by Aleyna Demirkıran (aleynademirkiran@bilkent.edu.tr) on 2025-02-22T13:57:25Z No. of bitstreams: 1 Human_Movement_Personality_Detection_Parameters.pdf: 786366 bytes, checksum: ac9bc11dd1b65313b7e90244edabf820 (MD5)en
dc.description.provenanceMade available in DSpace on 2025-02-22T13:57:25Z (GMT). No. of bitstreams: 1 Human_Movement_Personality_Detection_Parameters.pdf: 786366 bytes, checksum: ac9bc11dd1b65313b7e90244edabf820 (MD5) Previous issue date: 2024-06-23en
dc.identifier.doi10.1109/SIU61531.2024.10601008
dc.identifier.eisbn979-8-3503-8896-1
dc.identifier.issn2165-0608
dc.identifier.urihttps://hdl.handle.net/11693/116640
dc.language.isoTurkish
dc.publisherIEEE
dc.relation.isversionofhttps://dx.doi.org/10.1109/SIU61531.2024.10601008
dc.subjectAnimation
dc.subjectPersonality
dc.subjectLaban movement analysis
dc.subjectFive factor personality
dc.subjectComputer graphics
dc.subjectFive Factor Personality Theory
dc.titleHuman movement personality detection parameters
dc.typeConference Paper

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Human_Movement_Personality_Detection_Parameters.pdf
Size:
767.94 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: