Kesirli fourier dönüşümü genliklerinden karmaşık sinyallerin geri kazanımı
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Bu makalede kesirli Fourier dönüşümü genlikleri kullanılarak karmaşık sinyallerin evrelerinin bulunması üzerinde durulmuştur. Bu aynı zamanda optik eksende enine boyuna rastgele iki yerde yapılan genlik ölçümlerinden evre bilgisinin bulunmasına karşılık gelmektedir. İteratif algoritmanın yakınsaklığı, gürültü ve ölçüm hatalarının etkisi ve bunların dönüşümün kesir değerine olan bağlılığı incelenmiştir. Genel olarak, kesir değerinin ünitere yakın olduğu durumlarda, sıfıra yakın olduğu durumlara göre daha iyi sonuçlar elde edilmiştir. Buna göre, en iyi sonuçları elde etmek için, iki ölçüm düzlemi arasındaki kesir değeri ünitere olabildiğince yakın seçilmelidir.
The problem of recovering a complex signal from the magnitudes of two of its fractional Fourier transforms is addressed This corresponds to phase retrieval from the transverse intensity profiles of an optical field at two arbitrary locations along the optical axis. The convergence of the iterative algorithm, the effects of noise or measurement errors, and their dependence on the fractional transform order are investigated. It is observed that in general, better results are obtained when the fractional transform order is close to unity and poorer results are obtained when the order is close to zero. It follows that to the extent that conditions allow, the fractional order between the two measurement planes should be chosen as close to unity or other odd integer) as possible for best results.