Algebraic error analysis of collinear feature points for camera parameter estimation

buir.contributor.authorÇetin, A. Enis
buir.contributor.orcidÇetin, A. Enis|0000-0002-3449-1958
dc.citation.epage475en_US
dc.citation.issueNumber4en_US
dc.citation.spage467en_US
dc.citation.volumeNumber115en_US
dc.contributor.authorUrfalioglu, O.en_US
dc.contributor.authorThormählen, T.en_US
dc.contributor.authorBroszio, H.en_US
dc.contributor.authorMikulastik, P.en_US
dc.contributor.authorÇetin, A. Enisen_US
dc.date.accessioned2016-02-08T09:53:45Z
dc.date.available2016-02-08T09:53:45Z
dc.date.issued2011-01-04en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractIn general, feature points and camera parameters can only be estimated with limited accuracy due to noisy images. In case of collinear feature points, it is possible to benefit from this geometrical regularity by correcting the feature points to lie on the supporting estimated straight line, yielding increased accuracy of the estimated camera parameters. However, regarding Maximum-Likelihood (ML) estimation, this procedure is incomplete and suboptimal. An optimal solution must also determine the error covariance of corrected features. In this paper, a complete theoretical covariance propagation analysis starting from the error of the feature points up to the error of the estimated camera parameters is performed. Additionally, corresponding Fisher Information Matrices are determined and fundamental relationships between the number and distance of collinear points and corresponding error variances are revealed algebraically. To demonstrate the impact of collinearity, experiments are conducted with covariance propagation analyses, showing significant reduction of the error variances of the estimated parameters.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T09:53:45Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2011en
dc.identifier.doi10.1016/j.cviu.2010.12.003en_US
dc.identifier.issn1077-3142
dc.identifier.urihttp://hdl.handle.net/11693/21972
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.cviu.20http://dx.doi.org/10.12.003en_US
dc.source.titleComputer Vision and Image Understandingen_US
dc.subjectCamera parameter estimationen_US
dc.subjectCramer-Rao boundsen_US
dc.subjectError analysisen_US
dc.subjectML-estimationen_US
dc.subjectCamera parameteren_US
dc.subjectCollinearen_US
dc.subjectCollinearityen_US
dc.subjectCovariance propagationen_US
dc.subjectError covariancesen_US
dc.subjectError varianceen_US
dc.subjectEstimated parameteren_US
dc.subjectFeature pointen_US
dc.subjectFisher information matricesen_US
dc.subjectNoisy imageen_US
dc.subjectOptimal solutionsen_US
dc.subjectStraight linesen_US
dc.subjectCamerasen_US
dc.subjectFisher information matrixen_US
dc.subjectMaximum likelihood estimationen_US
dc.subjectMetal analysisen_US
dc.subjectParameter estimationen_US
dc.titleAlgebraic error analysis of collinear feature points for camera parameter estimationen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Algebraic error analysis of collinear feature points for camera parameter estimation.pdf
Size:
1014.64 KB
Format:
Adobe Portable Document Format
Description:
Full printable version