Generalizable deep mri reconstruction with cross-site data synthesis

buir.contributor.authorNezhad, Valiyeh Ansarian
buir.contributor.authorElmas, Gökberk
buir.contributor.authorFuat Arslan, Fuat Arslan
buir.contributor.authorÇukur, Tolga
buir.contributor.orcidElmas, Gökberk|0000-0003-0124-6048
buir.contributor.orcidArslan, Fuat|0009-0005-7844-890X
buir.contributor.orcidKabas, Bilal|0009-0008-7177-0594
buir.contributor.orcidÇukur, Tolga|0000-0002-2296-851X
dc.contributor.authorNezhad, Valiyeh Ansarian
dc.contributor.authorElmas, Gökberk
dc.contributor.authorArslan, Fuat
dc.contributor.authorKabas, Bilal
dc.contributor.authorÇukur, Tolga
dc.coverage.spatialMersin, Turkiye
dc.date.accessioned2025-02-23T07:48:06Z
dc.date.available2025-02-23T07:48:06Z
dc.date.issued2024-06-23
dc.departmentDepartment of Electrical and Electronics Engineering
dc.descriptionConference Name:32nd IEEE Signal Processing and Communications Applications Conference (SIU)
dc.descriptionDate of Conference:MAY 15-18, 2024
dc.description.abstractDeep learning techniques have enabled leaps in MRI reconstruction from undersampled acquisitions. While they yields high performance when tested on data from sites that the training data originates, they suffer from performance losses when tested on separate sites. In this work, we proposed a novel learning technique to improve generalization in deep MRI reconstruction. The proposed method employs cross-site data synthesis to benefit from multi-site data without introducing patient privacy risks. First, MRI priors are captured via generative adversarial models trained at each site independently. These priors are shared across sites, and then used to synthesize data from multiple sites. Afterwards, MRI reconstruction models are trained using these synthetic data. Experiments indicate that the proposed method attains higher generalization against single-site models, and higher site-specific performance against site-average models.
dc.description.provenanceSubmitted by Aleyna Demirkıran (aleynademirkiran@bilkent.edu.tr) on 2025-02-23T07:48:06Z No. of bitstreams: 1 Generalizable_Deep_MRI_Reconstruction_with_Cross_Site_Data_Synthesis.pdf: 1661492 bytes, checksum: e0d39cf059979eac348a0e3947deb4c9 (MD5)en
dc.description.provenanceMade available in DSpace on 2025-02-23T07:48:06Z (GMT). No. of bitstreams: 1 Generalizable_Deep_MRI_Reconstruction_with_Cross_Site_Data_Synthesis.pdf: 1661492 bytes, checksum: e0d39cf059979eac348a0e3947deb4c9 (MD5) Previous issue date: 2024-06-23en
dc.identifier.doi10.1109/SIU61531.2024.10600783
dc.identifier.eisbn979-8-3503-8896-1
dc.identifier.issn2165-0608
dc.identifier.issn2165-0608
dc.identifier.urihttps://hdl.handle.net/11693/116667
dc.language.isoEnglish
dc.publisherIEEE
dc.relation.isversionofhttps://dx.doi.org/10.1109/SIU61531.2024.10600783
dc.subjectMagnetic resonance imaging (MRI)
dc.subjectPrior
dc.subjectGenerative adversarial network (GAN)
dc.subjectReconstruction
dc.titleGeneralizable deep mri reconstruction with cross-site data synthesis
dc.typeConference Paper

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Generalizable_Deep_MRI_Reconstruction_with_Cross_Site_Data_Synthesis.pdf
Size:
1.58 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: