Construction of light emitting nanostructures through self-assembly of oligothiophene-based macromolecules for biomedical applications
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
This work discusses the synthesis and characterizations of oligothiophene-based macromolecules and the construction of nanostructures through self-assembly of these macromolecules in water. In order to prepare the macromolecules, first bi-functional oligothiophenes are synthesized, characterized and then, the properly functionalized polyethylene glycol is linked to oligothiophene through nucleophilic substitution reactions to obtain an amphiphilic macromolecule. Self-assembly of amphiphilic macromolecules in water are investigated; the size and the morphology of the resulting nanostructures are determined by various techniques including dynamic light scattering, SEM and TEM. Their optical properties are studied using UV-vis and fluorescent spectroscopies. Polyethylene oxide has been considered highly biocompatible and biodegradable material which make it candidate for the biological applications as carrier for bioactive materials and controlled releasing of the drugs.