Facial feedback for reinforcement learning: A case study and ofine analysis using the TAMER framework

buir.contributor.authorDibeklioğlu, Hamdi
dc.citation.issueNumber1en_US
dc.citation.spage22en_US
dc.citation.volumeNumber34en_US
dc.contributor.authorLi, G.en_US
dc.contributor.authorDibeklioğlu, Hamdien_US
dc.contributor.authorWhiteson, S.en_US
dc.contributor.authorHung, H.en_US
dc.date.accessioned2021-02-27T16:59:34Z
dc.date.available2021-02-27T16:59:34Z
dc.date.issued2020-02
dc.departmentDepartment of Computer Engineeringen_US
dc.description.abstractInteractive reinforcement learning provides a way for agents to learn to solve tasks from evaluative feedback provided by a human user. Previous research showed that humans give copious feedback early in training but very sparsely thereafter. In this article, we investigate the potential of agent learning from trainers’ facial expressions via interpreting them as evaluative feedback. To do so, we implemented TAMER which is a popular interactive reinforcement learning method in a reinforcement-learning benchmark problem—Infinite Mario, and conducted the first large-scale study of TAMER involving 561 participants. With designed CNN–RNN model, our analysis shows that telling trainers to use facial expressions and competition can improve the accuracies for estimating positive and negative feedback using facial expressions. In addition, our results with a simulation experiment show that learning solely from predicted feedback based on facial expressions is possible and using strong/effective prediction models or a regression method, facial responses would significantly improve the performance of agents. Furthermore, our experiment supports previous studies demonstrating the importance of bi-directional feedback and competitive elements in the training interface.en_US
dc.description.provenanceSubmitted by Evrim Ergin (eergin@bilkent.edu.tr) on 2021-02-27T16:59:34Z No. of bitstreams: 1 Facial_feedback_for_reinforcement_learning_A_case_study_and_ofine_analysis_using_the_TAMER_framework.pdf: 1828268 bytes, checksum: 787d749849bbf396fb9d1d992700aa8f (MD5)en
dc.description.provenanceMade available in DSpace on 2021-02-27T16:59:34Z (GMT). No. of bitstreams: 1 Facial_feedback_for_reinforcement_learning_A_case_study_and_ofine_analysis_using_the_TAMER_framework.pdf: 1828268 bytes, checksum: 787d749849bbf396fb9d1d992700aa8f (MD5) Previous issue date: 2020-02en
dc.identifier.doi10.1007/s10458-020-09447-wen_US
dc.identifier.issn1387-2532en_US
dc.identifier.urihttp://hdl.handle.net/11693/75626en_US
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttps://dx.doi.org/10.1007/s10458-020-09447-wen_US
dc.source.titleAutonomous Agents and Multi-Agent Systemsen_US
dc.subjectReinforcement learningen_US
dc.subjectFacial expressionsen_US
dc.subjectHuman agent interactionen_US
dc.subjectInteractive reinforcement learningen_US
dc.titleFacial feedback for reinforcement learning: A case study and ofine analysis using the TAMER frameworken_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Facial_feedback_for_reinforcement_learning_A_case_study_and_ofine_analysis_using_the_TAMER_framework.pdf
Size:
1.74 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: