Workload clustering for increasing energy savings on embedded MPSOCS

dc.citation.epage565en_US
dc.citation.spage549en_US
dc.contributor.authorÖztürk, Özcanen_US
dc.contributor.authorKandemir, M.en_US
dc.contributor.authorNarayanan, S. H. K.en_US
dc.contributor.editorZomaya, A. Y.
dc.contributor.editorLee, Y. C.
dc.date.accessioned2019-05-06T12:21:59Z
dc.date.available2019-05-06T12:21:59Z
dc.date.issued2012en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.descriptionChapter 19en_US
dc.description.abstractOur goal in this chapter is to explore a workload (job) clustering scheme that combines voltage scaling with processor shutdown.1 The uniqueness of the proposed unified approach is that it maximizes the opportunities for processor shutdown by carefully assigning workload to processors. It achieves this by clustering the original workload of processors in as few processors as possible. In this chapter, we discuss the technical details of this approach to energy saving in embedded MPSoCs. The proposed approach is based on ILP (integer linear programing); that is, it determines the optimal workload clustering across the processors by formulating the problem using ILP and solving it using a linear solver. In order to check whether this approach brings any energy benefits over pure voltage scaling, pure processor shutdown, or a simple unified scheme, we implemented four different approaches within our linear solver and tested them using a set of eight array/loop-intensive embedded applications. Our simulationbased analysis reveals that the proposed ILP-based approach (i) is very effective in reducing the energy consumptions of the applications tested and (ii) generates much better energy savings than all the alternate schemes tested (including one that combines voltage/frequency scaling and processor shutdown).en_US
dc.description.provenanceSubmitted by Zeynep Aykut (zeynepay@bilkent.edu.tr) on 2019-05-06T12:21:59Z No. of bitstreams: 1 Workload_clustering_for_increasing_energy_savings_on_embedded_MPSOCS.pdf: 134445 bytes, checksum: a809fe606e3920ac2910d5a40f04eba6 (MD5)en
dc.description.provenanceMade available in DSpace on 2019-05-06T12:21:59Z (GMT). No. of bitstreams: 1 Workload_clustering_for_increasing_energy_savings_on_embedded_MPSOCS.pdf: 134445 bytes, checksum: a809fe606e3920ac2910d5a40f04eba6 (MD5) Previous issue date: 2012en
dc.identifier.doi10.1002/9781118342015.ch19en_US
dc.identifier.doi10.1002/9781118342015en_US
dc.identifier.eisbn9781118342015en_US
dc.identifier.isbn9780470908754en_US
dc.identifier.urihttp://hdl.handle.net/11693/51128en_US
dc.language.isoEnglishen_US
dc.publisherWileyen_US
dc.relation.ispartofEnergy‐efficient distributed computing systemsen_US
dc.relation.isversionofhttps://doi.org/10.1002/9781118342015.ch19en_US
dc.relation.isversionofhttps://doi.org/10.1002/9781118342015en_US
dc.titleWorkload clustering for increasing energy savings on embedded MPSOCSen_US
dc.typeBook Chapteren_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Workload_clustering_for_increasing_energy_savings_on_embedded_MPSOCS.pdf
Size:
131.29 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: