Robust one-class classification using deep kernel spectral regression
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
The existing one-class classification (OCC) methods typically presume the existence of a pure target training set and generally face difficulties when the training set is contaminated with non-target objects. This work addresses this aspect of the OCC problem and formulates an effective method that leverages the advantages of kernel-based methods to achieve robustness against training label noise while enabling direct deep learning of features from the data to optimise a Fisher-based loss function in the Hilbert space. As such, the proposed OCC approach can be trained in an end-to-end fashion while, by virtue of a Tikhonov regularisation in the Hilbert space, it provides high robustness against the training set contamination. Extensive experiments conducted on multiple datasets in different application scenarios demonstrate that the proposed methodology is robust and performs better than the state-of-the-art algorithms for OCC when the training set is corrupted by contamination.