Coulomb drag in parallel quantum dots

buir.contributor.authorTanatar, Bilal
buir.contributor.orcidTanatar, Bilal|0000-0002-5246-0119
dc.citation.epage67004-6en_US
dc.citation.issueNumber6en_US
dc.citation.spage67004-1en_US
dc.citation.volumeNumber86en_US
dc.contributor.authorOldoveanu, V.en_US
dc.contributor.authorTanatar, Bilalen_US
dc.date.accessioned2015-07-28T11:58:57Z
dc.date.available2015-07-28T11:58:57Z
dc.date.issued2009-07-9en_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractWe study theoretically the electronic transport in parallel few-level quantum dots in the presence of both intradot and interdot long-range Coulomb interaction. Each dot is connected to two leads and the steady-state currents are calculated within the Keldysh formalism using the random-phase approximation for the interacting Green functions. Due to the momentum transfer between the two systems it is possible to get a nonvanishing current through an unbiased Coulomb-blockaded dot, if the other dot is set in the nonlinear transport regime. The transitions between the levels of the passive dot reduce the drag current and lead to negative differential conductance. We also discuss the dependence on temperature and the role of the lead-dot coupling. Copyright (C) EPLA, 2009en_US
dc.description.provenanceMade available in DSpace on 2015-07-28T11:58:57Z (GMT). No. of bitstreams: 1 10.1209-0295-5075-86-67004.pdf: 504421 bytes, checksum: 1de2fe43edde77345f0077823a2de61f (MD5)en
dc.identifier.doi10.1209/0295-5075/86/67004en_US
dc.identifier.issn0295-5075
dc.identifier.urihttp://hdl.handle.net/11693/11839
dc.language.isoEnglishen_US
dc.publisherEurophysics Letters Associationen_US
dc.relation.isversionofhttps://doi.org/10.1209/0295-5075/86/67004en_US
dc.source.titleEPLen_US
dc.subjectElectron-systemsen_US
dc.subjectFluctuationsen_US
dc.subjectWireen_US
dc.titleCoulomb drag in parallel quantum dotsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1209-0295-5075-86-67004.pdf
Size:
492.6 KB
Format:
Adobe Portable Document Format