Suppression of thermoelectric Thomson effect in silicon microwires under large electrical bias and implications for phase-change memory devices
dc.citation.issueNumber | 23 | en_US |
dc.citation.volumeNumber | 116 | en_US |
dc.contributor.author | Bakan G. | en_US |
dc.contributor.author | Gokirmak, A. | en_US |
dc.contributor.author | Silva H. | en_US |
dc.date.accessioned | 2016-02-08T11:01:51Z | |
dc.date.available | 2016-02-08T11:01:51Z | |
dc.date.issued | 2014 | en_US |
dc.department | Department of Computer Engineering | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description.abstract | We have observed how thermoelectric effects that result in asymmetric melting of silicon wires are suppressed for increasing electric current density (J). The experimental results are investigated using numerical modeling of the self-heating process, which elucidates the relative contributions of the asymmetric thermoelectric Thomson heat (∼J) and symmetric Joule heating (∼J2) that lead to symmetric heating for higher current levels. These results are applied in modeling of the self-heating process in phase-change memory devices. While, phase-change memory devices show a clearly preferred operation polarity due to thermoelectric effects, nearly symmetric operation can be achieved with higher amplitude and shorter current pulses, which can lead to design of improved polarity-invariant memory circuitry. © 2014 AIP Publishing LLC. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T11:01:51Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2014 | en |
dc.identifier.doi | 10.1063/1.4904746 | en_US |
dc.identifier.issn | 218979 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/26580 | en_US |
dc.language.iso | English | en_US |
dc.publisher | American Institute of Physics Inc. | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1063/1.4904746 | en_US |
dc.source.title | Journal of Applied Physics | en_US |
dc.subject | Heating | en_US |
dc.subject | Silicon | en_US |
dc.subject | Thermoelectricity | en_US |
dc.subject | Current levels | en_US |
dc.subject | Current pulse | en_US |
dc.subject | Electrical bias | en_US |
dc.subject | Micro wire | en_US |
dc.subject | Relative contribution | en_US |
dc.subject | Self-heating | en_US |
dc.subject | Silicon wires | en_US |
dc.subject | Thomson effects | en_US |
dc.subject | Phase change memory | en_US |
dc.title | Suppression of thermoelectric Thomson effect in silicon microwires under large electrical bias and implications for phase-change memory devices | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Suppression of thermoelectric Thomson effect in silicon microwires under large electrical bias and implications for phase-change memory devices.pdf
- Size:
- 1.82 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version