Learning with feature partitions

Date

1993

Editor(s)

Advisor

Güvenir, Halil Altay

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
3
views
27
downloads

Series

Abstract

This thesis presents a new methodology of learning from examples, based on feature partitioning. Classification by Feature Partitioning (CFP) is a particular implementation of this technique, which is an inductive, incremental, and supervised learning method. Learning in CFP is accomplished by storing the objects separately in each feature dimension as disjoint partitions of values. A partition, a basic unit of representation which is initially a point in the feature dimension, is expanded through generalization. The CFP algorithm specializes a partition by subdividing it into two subpartitions. Theoretical (with respect to PAC-model) and empirical evaluation of the CFP is presented and compared with some other similar techniques.

Course

Other identifiers

Book Title

Degree Discipline

Computer Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)