On the benefits of region of interest detection for whole slide image classification
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Whole slide image (WSI) classification methods typically use fixed-size patches that are processed separately and are aggregated for the final slide-level prediction. Image segmentation methods are designed to obtain a delineation of specific tissue types. These two tasks are usually studied independently. The aim of this work is to investigate the effect of region of interest (ROI) detection as a preliminary step for WSI classification. First, we process each WSI by using a pixel-level classifier that provides a binary segmentation mask for potentially important ROIs. We evaluate both single-resolution models that process each magnification independently and multi-resolution models that simultaneously incorporate contextual information and local details. Then, we compare the WSI classification performances of patch-based models when the patches used for both training and testing are extracted from the whole image and when they are sampled from only within the detected ROIs. The experiments using a binary classification setting for breast histopathology slides as benign vs. malignant show that the classifier that uses the patches sampled from the whole image achieves an F1 score of 0.68 whereas the classifiers that use patches sampled from the ROI detection results produced by the single- and multi-resolution models obtain scores between 0.75 and 0.83.