Persistent currents in mesoscopic loops and networks

Date

2003

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Turkish Journal of Physics

Print ISSN

1300-0101

Electronic ISSN

Publisher

TÜBİTAK

Volume

27

Issue

5

Pages

395 - 417

Language

English

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
3
views
9
downloads

Series

Abstract

The paper describes persistent (also termed "permanent", or "non-decaying") currents in mesoscopic metallic and macromolecular rings, cylinders and networks. The current arises as a response of system to Aharonov-Bohm flux threading the conducting loop and does not require external voltage to support the current. Magnitude of the current is periodic function of magnetic flux with a period of normal-metal flux quantum Φ 0 = hc/e. Spontaneous persistent currents arise in regular macromolecular structure without the Aharonov-Bohm flux provided the azimuthal periodicity of the ring is insured by strong coupling to periodic background (a "substrate"), otherwise the system will undergo the Peierls transition arrested at certain flux value smaller than Φ 0. Extremely small (nanoscopic, macromolecular) loop with three localization sites at flux Φ = Φ 0/2 develops a Λ-shaped energy configuration suitable to serve as a qubit, as well as at the same as a "qugate" (quantum logic gate) supporting full set of quantum transitions required for universal quantum computation. The difference of the Aharonov-Bohm qubit from another suggested condensed-matter quantum computational tools is in the radiation free couplings in a qubit supporting the scalable, long-lived quantum computation.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)