Partitioning sparse matrices for parallel preconditioned iterative methods

Date

2007

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
23
downloads

Citation Stats

Series

Abstract

This paper addresses the parallelization of the preconditioned iterative methods that use explicit preconditioners such as approximate inverses. Parallelizing a full step of these methods requires the coefficient and preconditioner matrices to be well partitioned. We first show that different methods impose different partitioning requirements for the matrices. Then we develop hypergraph models to meet those requirements. In particular, we develop models that enable us to obtain partitionings on the coefficient and preconditioner matrices simultaneously. Experiments on a set of unsymmetric sparse matrices show that the proposed models yield effective partitioning results. A parallel implementation of the right preconditioned BiCGStab method on a PC cluster verifies that the theoretical gains obtained by the models hold in practice. © 2007 Society for Industrial and Applied Mathematics.

Source Title

SIAM Journal on Scientific Computing

Publisher

Society for Industrial and Applied Mathematics

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English