Controlling polymer capture and translocation by electrostatic polymer-pore interactions

dc.citation.issueNumber11en_US
dc.citation.volumeNumber147en_US
dc.contributor.authorBüyükdağlı, Şahinen_US
dc.contributor.authorAla-Nissila, Tapioen_US
dc.date.accessioned2018-04-12T11:06:20Z
dc.date.available2018-04-12T11:06:20Z
dc.date.issued2017en_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractPolymer translocation experiments typically involve anionic polyelectrolytes such as DNA molecules driven through negatively charged nanopores. Quantitative modeling of polymer capture to the nanopore followed by translocation therefore necessitates the consideration of the electrostatic barrier resulting from like-charge polymer-pore interactions. To this end, in this work we couple mean-field level electrohydrodynamic equations with the Smoluchowski formalism to characterize the interplay between the electrostatic barrier, the electrophoretic drift, and the electro-osmotic liquid flow. In particular, we find that due to distinct ion density regimes where the salt screening of the drift and barrier effects occurs, there exists a characteristic salt concentration maximizing the probability of barrier-limited polymer capture into the pore. We also show that in the barrier-dominated regime, the polymer translocation time τ increases exponentially with the membrane charge and decays exponentially fast with the pore radius and the salt concentration. These results suggest that the alteration of these parameters in the barrier-driven regime can be an efficient way to control the duration of the translocation process and facilitate more accurate measurements of the ionic current signal in the pore.en_US
dc.identifier.doi10.1063/1.5004182en_US
dc.identifier.issn0021-9606
dc.identifier.urihttp://hdl.handle.net/11693/37218
dc.language.isoEnglishen_US
dc.publisherAmerican Institute of Physics Inc.en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.5004182en_US
dc.source.titleJournal of Chemical Physicsen_US
dc.titleControlling polymer capture and translocation by electrostatic polymer-pore interactionsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Controlling polymer capture and translocation by electrostatic polymer-pore interactions.pdf
Size:
886.27 KB
Format:
Adobe Portable Document Format
Description:
Full printable version