MLFMA memory reduction techniques for solving large-scale problems
buir.contributor.author | Gürel, Levent | |
dc.citation.epage | 750 | en_US |
dc.citation.spage | 749 | en_US |
dc.contributor.author | Hidayetoğlu, Mert | en_US |
dc.contributor.author | Gürel, Levent | en_US |
dc.coverage.spatial | Memphis, TN, USA | en_US |
dc.date.accessioned | 2016-02-08T12:00:09Z | |
dc.date.available | 2016-02-08T12:00:09Z | |
dc.date.issued | 2014 | en_US |
dc.department | Computational Electromagnetics Research Center (BiLCEM) | en_US |
dc.description | Date of Conference: 6-11 July 2014 | en_US |
dc.description.abstract | We present two memory reduction methods for the parallel multilevel fast multipole algorithm. One of these methods uses data structures out of core, and the other parallelizes the data structures related to input geometry. With these methods, large-scale electromagnetic scattering problems can be solved on modest parallel computers. © 2014 IEEE. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T12:00:09Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2014 | en |
dc.identifier.doi | 10.1109/APS.2014.6904704 | en_US |
dc.identifier.issn | 1522-3965 | |
dc.identifier.uri | http://hdl.handle.net/11693/27718 | |
dc.language.iso | English | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/APS.2014.6904704 | en_US |
dc.source.title | 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI) | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Data structures | en_US |
dc.subject | Large-scale electromagnetic scatterings | en_US |
dc.subject | Large-scale problem | en_US |
dc.subject | Memory reduction | en_US |
dc.subject | Multi-level fast multi-pole algorithm | en_US |
dc.subject | Out-of-core | en_US |
dc.subject | Parallel computer | en_US |
dc.subject | Electromagnetic wave scattering | en_US |
dc.title | MLFMA memory reduction techniques for solving large-scale problems | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- MLFMA memory reduction techniques for solving large-scale problems.pdf
- Size:
- 761.49 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full Printable Version