On the discretization of Laine equations

buir.contributor.authorZheltukhina, Natalya
dc.citation.epage177en_US
dc.citation.issueNumber1en_US
dc.citation.spage166en_US
dc.citation.volumeNumber25en_US
dc.contributor.authorZheltukhin, K.en_US
dc.contributor.authorZheltukhina, Natalyaen_US
dc.date.accessioned2019-02-21T16:03:18Z
dc.date.available2019-02-21T16:03:18Z
dc.date.issued2018en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe consider the discretization of Darboux integrable equations. For each of the integrals of a Laine equation we constructed either a semi-discrete equation which has that integral as an n-integral, or we proved that such an equation does not exist. It is also shown that all constructed semi-discrete equations are Darboux integrable.
dc.description.provenanceMade available in DSpace on 2019-02-21T16:03:18Z (GMT). No. of bitstreams: 1 Bilkent-research-paper.pdf: 222869 bytes, checksum: 842af2b9bd649e7f548593affdbafbb3 (MD5) Previous issue date: 2018en
dc.identifier.doi10.1080/14029251.2018.1440748
dc.identifier.issn1402-9251
dc.identifier.urihttp://hdl.handle.net/11693/50093
dc.language.isoEnglish
dc.publisherTaylor and Francis
dc.relation.isversionofhttps://doi.org/10.1080/14029251.2018.1440748
dc.source.titleJournal of Nonlinear Mathematical Physicsen_US
dc.subjectDarboux integrabilityen_US
dc.subjectDiscretizationen_US
dc.subjectN-integralen_US
dc.subjectSemi-discrete chainen_US
dc.subjectx-integralen_US
dc.titleOn the discretization of Laine equationsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
On_the_discretization_of_Laine_equations.pdf
Size:
403.91 KB
Format:
Adobe Portable Document Format
Description:
Full printable version