On the discretization of Laine equations
buir.contributor.author | Zheltukhina, Natalya | |
dc.citation.epage | 177 | en_US |
dc.citation.issueNumber | 1 | en_US |
dc.citation.spage | 166 | en_US |
dc.citation.volumeNumber | 25 | en_US |
dc.contributor.author | Zheltukhin, K. | en_US |
dc.contributor.author | Zheltukhina, Natalya | en_US |
dc.date.accessioned | 2019-02-21T16:03:18Z | |
dc.date.available | 2019-02-21T16:03:18Z | |
dc.date.issued | 2018 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | We consider the discretization of Darboux integrable equations. For each of the integrals of a Laine equation we constructed either a semi-discrete equation which has that integral as an n-integral, or we proved that such an equation does not exist. It is also shown that all constructed semi-discrete equations are Darboux integrable. | |
dc.description.provenance | Made available in DSpace on 2019-02-21T16:03:18Z (GMT). No. of bitstreams: 1 Bilkent-research-paper.pdf: 222869 bytes, checksum: 842af2b9bd649e7f548593affdbafbb3 (MD5) Previous issue date: 2018 | en |
dc.identifier.doi | 10.1080/14029251.2018.1440748 | |
dc.identifier.issn | 1402-9251 | |
dc.identifier.uri | http://hdl.handle.net/11693/50093 | |
dc.language.iso | English | |
dc.publisher | Taylor and Francis | |
dc.relation.isversionof | https://doi.org/10.1080/14029251.2018.1440748 | |
dc.source.title | Journal of Nonlinear Mathematical Physics | en_US |
dc.subject | Darboux integrability | en_US |
dc.subject | Discretization | en_US |
dc.subject | N-integral | en_US |
dc.subject | Semi-discrete chain | en_US |
dc.subject | x-integral | en_US |
dc.title | On the discretization of Laine equations | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- On_the_discretization_of_Laine_equations.pdf
- Size:
- 403.91 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version