Causal interactions from proteomic profiles: Molecular data meet pathway knowledge

Available
The embargo period has ended, and this item is now available.

Date

2021-06

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Patterns

Print ISSN

2666-3899

Electronic ISSN

Publisher

Cell Press

Volume

2

Issue

6

Pages

100257-1 - 100257-12

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
3
views
13
downloads

Series

Abstract

We present a computational method to infer causal mechanisms in cell biology by analyzing changes in high-throughput proteomic profiles on the background of prior knowledge captured in biochemical reaction knowledge bases. The method mimics a biologist's traditional approach of explaining changes in data using prior knowledge but does this at the scale of hundreds of thousands of reactions. This is a specific example of how to automate scientific reasoning processes and illustrates the power of mapping from experimental data to prior knowledge via logic programming. The identified mechanisms can explain how experimental and physiological perturbations, propagating in a network of reactions, affect cellular responses and their phenotypic consequences. Causal pathway analysis is a powerful and flexible discovery tool for a wide range of cellular profiling data types and biological questions. The automated causation inference tool, as well as the source code, are freely available at http://causalpath.org.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)