A graphical network layer for lagged analysis of FMRI data

buir.contributor.authorBedel, Hasan Atakan
buir.contributor.authorŞıvgın, Irmak
buir.contributor.authorÇukur, Tolga
buir.contributor.orcidÇukur, Tolga|0000-0002-2296-851X
dc.citation.epage[4]en_US
dc.citation.spage[1]en_US
dc.contributor.authorBedel, Hasan Atakan
dc.contributor.authorŞıvgın, Irmak
dc.contributor.authorÇukur, Tolga
dc.coverage.spatialSafranbolu, Turkeyen_US
dc.date.accessioned2023-02-15T07:23:02Z
dc.date.available2023-02-15T07:23:02Z
dc.date.issued2022-08-29
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionConference Name: 2022 30th Signal Processing and Communications Applications Conference (SIU)en_US
dc.descriptionDate of Conference: 15-18 May 2022en_US
dc.description.abstractFunctional magnetic resonance imaging (fMRI) enables recording the brain’s neural activity spatiotemporally and is the center of much cutting-edge psychology and neuroscience research. Many methods are proposed to process the 4-dimensional data the fMRI scans provide. The most common approach for classification tasks is to analyze functional connectivity, where brain volume is parcelled to regions, and the correlation between their time series is calculated. Such an approach is very suitable for graphical neural networks, a popular deep learning method for graphical data analysis. A graph is constructed by formulating the parcelled brain regions as the graph nodes, while their features and edges are constructed from the correlations. However, in many studies, the correlations are calculated from simple methods that do not take account of the lagged relations between the node time-series. This paper addresses this issue by proposing a new graphical neural network layer. This layer accounts for lagged relationships between the nodes and learns reacher features rather than simple zero-lag correlations. We show that our graphical layer can be used in front of a known graphical model and increase its performance for two different downstream tasks in a large fMRI dataset.en_US
dc.description.abstractFonksiyonel manyetik rezonans görüntüleme (fMRG), beyindeki sinirsel etkinliği zamansal ve uzamsal olarak kaydedebilen bir görüntüleme tekniğidir ve yenilikçi psikoloji ve sinirbilimi araştırmalarının merkezindedir. fMRG taramalarının 4 boyutlu verisini işleyebilmek için çeşitli metotlar önerilmiştir. Sınıflandırma çalışmalarında en yaygın olarak kullanılan teknik, beynin bölgelere ayrılması ve bu bölgelerin zaman serileri arasında korelasyon hesaplanmasıyla bulunan fonksiyonel bağlılık ölçütüdür. Söz konusu yaklaşım, grafiksel verilerin derin öğrenme ile işlenmesinde popüler bir teknik olan grafiksel sinir ağlarında kullanmak için uygundur. Grafiksel sinir ağlarında bölünmüş beyin bölgeleri düğümleri oluştururken düğümler arasındaki bağlantılar ve düğümlerin özellik vektörleri korelasyon hesabına dayanır. Çoğu çalışmada bu korelasyon hesabı yapılırken dü- ğümlerin zaman serileri arasındaki gecikmeli ilişkiler göz ardı edilmektedir. Bu makalede önerilen yeni sinirsel ağ katmanıyla gecikmeli ilişkilerin etkisinin incelenmesi hedeflenmiştir. Bu katman düğümler arasında gecikmeli ilişki hesabı yaparak basit, sıfır gecikmeli korelasyona göre daha zengin özellik vektörleri oluşturulmasını sağlar. Bu makaleyle, önerdiğimiz grafiksel katmanın bilinen başka bir grafiksel modelin önüne eklenmesi sonucu performans artımı sağlanabileceğini 2 çalışmayla gösteriyoruz.
dc.identifier.doi10.1109/SIU55565.2022.9864826en_US
dc.identifier.eisbn978-1-6654-5092-8
dc.identifier.issn2165-0608
dc.identifier.urihttp://hdl.handle.net/11693/111296
dc.language.isoTurkishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttps://www.doi.org/10.1109/SIU55565.2022.9864826en_US
dc.source.titleSignal Processing and Communications Applications Conference (SIU)en_US
dc.subjectfMRIen_US
dc.subjectDeep learningen_US
dc.subjectGraphical neural networksen_US
dc.subjectfMRGen_US
dc.subjectDerin öğrenmeen_US
dc.subjectGrafik sinir ağlarıen_US
dc.titleA graphical network layer for lagged analysis of FMRI dataen_US
dc.title.alternativeFMRG verisinin gecikmeli analizi için bir grafiksel sinir ağı katmanıen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A_Graphical_Network_Layer_for_Lagged_Analysis_of_FMRI_Data.pdf
Size:
1.12 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: