The growth irregularity of slowly growing entire functions
dc.citation.epage | 312 | en_US |
dc.citation.issueNumber | 4 | en_US |
dc.citation.spage | 304 | en_US |
dc.citation.volumeNumber | 40 | en_US |
dc.contributor.author | Ostrovskii, I. V. | en_US |
dc.contributor.author | Üreyen, A. E. | en_US |
dc.date.accessioned | 2016-02-08T10:18:02Z | |
dc.date.available | 2016-02-08T10:18:02Z | |
dc.date.issued | 2006 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | We show that entire transcendental functions f satisfying log M(r,f) = o(log 2r), r → ∞ (M(r,f): = maxf(z)| necessarily have growth irregularity, which increases as the growth diminishes. In particular, if 1 < p < 2, then the asymptotics log M(r,f) = (log pr) +0 (log2-pr), r → ∞ is impossible. It becomes possible if "o" is replaced by "O.". © Springer Science+Business Media, Inc. 2006. | en_US |
dc.identifier.doi | 10.1007/s10688-006-0047-7 | en_US |
dc.identifier.eissn | 1573-8485 | |
dc.identifier.issn | 0016-2663 | |
dc.identifier.uri | http://hdl.handle.net/11693/23710 | |
dc.language.iso | English | en_US |
dc.publisher | Springer New York LLC | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s10688-006-0047-7 | en_US |
dc.source.title | Functional Analysis and its Applications | en_US |
dc.subject | Clunie - Kövari theorem | en_US |
dc.subject | Erdös - Kövari theorem | en_US |
dc.subject | Hayman convexity theorem | en_US |
dc.subject | Levin ' s strong proximate order | en_US |
dc.subject | Maximum term | en_US |
dc.title | The growth irregularity of slowly growing entire functions | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- The_Growth_Irregularity_of_Slowly_Growing_Entire_Functions.pdf
- Size:
- 153.66 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version