The growth irregularity of slowly growing entire functions

dc.citation.epage312en_US
dc.citation.issueNumber4en_US
dc.citation.spage304en_US
dc.citation.volumeNumber40en_US
dc.contributor.authorOstrovskii, I. V.en_US
dc.contributor.authorÜreyen, A. E.en_US
dc.date.accessioned2016-02-08T10:18:02Z
dc.date.available2016-02-08T10:18:02Z
dc.date.issued2006en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe show that entire transcendental functions f satisfying log M(r,f) = o(log 2r), r → ∞ (M(r,f): = maxf(z)| necessarily have growth irregularity, which increases as the growth diminishes. In particular, if 1 < p < 2, then the asymptotics log M(r,f) = (log pr) +0 (log2-pr), r → ∞ is impossible. It becomes possible if "o" is replaced by "O.". © Springer Science+Business Media, Inc. 2006.en_US
dc.identifier.doi10.1007/s10688-006-0047-7en_US
dc.identifier.eissn1573-8485
dc.identifier.issn0016-2663
dc.identifier.urihttp://hdl.handle.net/11693/23710
dc.language.isoEnglishen_US
dc.publisherSpringer New York LLCen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10688-006-0047-7en_US
dc.source.titleFunctional Analysis and its Applicationsen_US
dc.subjectClunie - Kövari theoremen_US
dc.subjectErdös - Kövari theoremen_US
dc.subjectHayman convexity theoremen_US
dc.subjectLevin ' s strong proximate orderen_US
dc.subjectMaximum termen_US
dc.titleThe growth irregularity of slowly growing entire functionsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The_Growth_Irregularity_of_Slowly_Growing_Entire_Functions.pdf
Size:
153.66 KB
Format:
Adobe Portable Document Format
Description:
Full printable version