On the Titchmarsh convolution theorem

dc.citation.epage46en_US
dc.citation.issueNumber1en_US
dc.citation.spage41en_US
dc.citation.volumeNumber331en_US
dc.contributor.authorGergün, S.en_US
dc.contributor.authorOstrovskii, I.en_US
dc.contributor.authorUlanovskii, A.en_US
dc.date.accessioned2016-02-08T10:38:00Z
dc.date.available2016-02-08T10:38:00Z
dc.date.issued2000en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractLet M be the set of all finite complex-valued Borel measures μ≢0 on ℝ. Set ℓ(μ) inf(supp μ). The classical Titchmarsh convolution theorem claims that if: (i) μj ∈ M, (ii) ℓ(μj) > - ∞, j = 1,. . . , n, then ℓ(μ1) + ⋯ + ℓ(μn) = ℓ(μ1 * ⋯ * μn). The condition (ii) cannot be omitted. In 80's, it had been shown that (ii) can be replaced with sufficiently rapid decay of the measures μj at - ∞ and the best possible condition of this form had been found. We show that the last condition can be weakened if we dealing with linearly dependent measures μj, and find the best possible condition in this case. © 2000 Académie des ciences/Éditions scientifiques et médicales Elsevier SAS.en_US
dc.identifier.doi10.1016/S0764-4442(00)00510-3en_US
dc.identifier.issn0764-4442
dc.identifier.urihttp://hdl.handle.net/11693/25028
dc.language.isoFrenchen_US
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttps://doi.org/10.1016/S0764-4442(00)00510-3en_US
dc.source.titleComptes Rendus de l'Academie des Sciences - Series I: Mathematicsen_US
dc.titleOn the Titchmarsh convolution theoremen_US
dc.title.alternativeSur le théorème de convolution de Titchmarshen_US
dc.typeArticleen_US

Files