Novel gating mechanisms for temporal convolutional networks

buir.advisorKozat, Süleyman Serdar
dc.contributor.authorAslan, Fatih
dc.date.accessioned2021-09-22T11:33:21Z
dc.date.available2021-09-22T11:33:21Z
dc.date.copyright2021-09
dc.date.issued2021-09
dc.date.submitted2021-09-16
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionThesis (Master's): Bilkent University, Department of Electrical and Electronics Engineering, İhsan Doğramacı Bilkent University, 2021.en_US
dc.descriptionIncludes bibliographical references (leaves 56-60).en_US
dc.description.abstractWe investigate the sequential modeling problem and introduce a novel gating mechanism into the temporal convolutional network architectures. In particular, we propose the Gated Temporal Convolutional Network architecture with elaborately tailored gating mechanisms. In our implementation, we alter the way in which the gradients ow and avoid the vanishing or exploding gradient and the dead ReLU problems. The proposed GTCN architecture is able to model the irregularly sampled sequences as well. In our experiments, we show that the basic GTCN architecture is superior to the generic TCN architectures in various benchmark tasks requiring the modeling of long-term dependencies and irregular sampling intervals. Moreover, we achieve the state-of-the-art results on the permuted sequential MNIST and the sequential CIFAR10 benchmarks with the basic structure.en_US
dc.description.provenanceSubmitted by Betül Özen (ozen@bilkent.edu.tr) on 2021-09-22T11:33:21Z No. of bitstreams: 1 10420529.pdf: 1389553 bytes, checksum: 5987023b9ccf82a99d64e594a937ae2b (MD5)en
dc.description.provenanceMade available in DSpace on 2021-09-22T11:33:21Z (GMT). No. of bitstreams: 1 10420529.pdf: 1389553 bytes, checksum: 5987023b9ccf82a99d64e594a937ae2b (MD5) Previous issue date: 2021-09en
dc.description.statementofresponsibilityby Fatih Aslanen_US
dc.format.extentxiii, 60 leaves : illustrations, charts ; 30 cm.en_US
dc.identifier.itemidB154698
dc.identifier.urihttp://hdl.handle.net/11693/76529
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSequential learningen_US
dc.subjectTemporal convolutional networksen_US
dc.titleNovel gating mechanisms for temporal convolutional networksen_US
dc.title.alternativeZamansal evrişimli sinirsel ağlar için özgün bir geçit mekanizmasıen_US
dc.typeThesisen_US
thesis.degree.disciplineElectrical and Electronic Engineering
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10420529.pdf
Size:
1.33 MB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: