Precious metal‐free photocatalytic water oxidation by a layered double hydroxide‐Prussian blue analogue hybrid assembly
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
The development of earth‐abundant photocatalytic assemblies has been one of the bottlenecks for the advancement of scalable water splitting cells. In this study, a ZnCr layered double hydroxide and a CoFe Prussian blue analogue are combined to afford an earth‐abundant photocatalytic assembly involving a visible light‐absorbing semiconductor (SC) and a water oxidation catalyst (WOC). Compared to bare ZnCr‐LDH, the SC‐WOC hybrid assembly exhibits a threefold enhancement in photocatalytic activity, which is maintained for 6 h under photocatalytic conditions at pH 7. The band energy diagram was extracted from optical and electrochemical studies to elucidate the origin of the enhanced photocatalytic performance. This study marks a straightforward pathway to develop low‐cost and precious metal‐free assemblies for visible light‐driven water oxidation.