Methods for target detection in SAR images

Date

2009

Editor(s)

Advisor

Çetin, A. Enis

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
4
views
42
downloads

Series

Abstract

Automatic recognition and classification of man-made objects in SAR (Synthetic Aperture Radar) images have been an active research area because SAR sensors can produce images of scenes in all weather conditions at any time of the day which is not possible with infrared and optical sensors [1, 2]. In this thesis, different feature parameter extraction methods from SAR images are proposed. The new approach is based on region covariance (RC) method which involves the computation of a covariance matrix of a ROI (region of interest). Entries of the covariance matrix are used in target detection. In addition, the use of computationally more efficient region codifference matrix for target detection in SAR images is also introduced. Simulation results of target detection in MSTAR (Moving and Stationary Target Recognition) database are presented. The RC and region codifference methods deliver high detection accuracies and low false alarm rates. The performance of these methods is investigated with various distance metrics and Support Vector Machine (SVM) classifiers. It is also observed that the region codifference method produces better results than the commonly used Principle Component Analysis (PCA) method which is used together with SVM. The second part of the thesis offers some techniques to decrease the computational cost of the proposed methods. In this approach, ROIs are filtered by directional filters (DFs) at first as a pre-processing stage. Images are categorized according to the filter outputs. The proposed RC and codifference methods are applied within the categories determined by these filters. Simulation results of target detection in MSTAR database are presented through decisions made with l1 norm distance metric and SVM. The number of comparisons made with the training images using l1 norm distance measure decreases as these images are distributed into categories. Therefore, the computational cost of the previous algorithm is significantly reduced. SAR image classification results based on l1 norm distance metric are better than the results obtained using SVM and they show that the two-stage approach does not reduce the performance rate of the previously proposed method much, especially when codifference features are used.

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)