Plasmon-phonon coupling in a valley-spin-polarized two-dimensional electron system: a theoretical study on monolayer silicene

buir.contributor.authorTanatar, Bilal
buir.contributor.orcidTanatar, Bilal|0000-0002-5246-0119
dc.citation.epage045429-1en_US
dc.citation.issueNumber4en_US
dc.citation.spage045429-9en_US
dc.citation.volumeNumber98en_US
dc.contributor.authorMirzaei, M.en_US
dc.contributor.authorVazifehshenas, T.en_US
dc.contributor.authorSalavati-Fard, T.en_US
dc.contributor.authorFarmanbar, M.en_US
dc.contributor.authorTanatar, Bilalen_US
dc.date.accessioned2019-02-21T16:03:57Z
dc.date.available2019-02-21T16:03:57Z
dc.date.issued2018en_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractWe study the hybrid excitations due to the coupling between surface optical phonons of a polar insulator substrate and plasmons in the valley-spin-polarized metal phase of silicene under an exchange field. We perform the calculations within the generalized random-phase approximation where the plasmon-phonon coupling is taken into account by the long-range Fröhlich interaction. Our investigation on two hybridized plasmon branches in different spin and valley subbands shows distinct behavior compared to the uncoupled case. Interestingly, in one valley, it is found that while the high-energy hybrid branch is totally damped in the spin-up state, it can be well defined in the spin-down state. Moreover, we show that the electron-phonon coupling is stronger in both spin-down subbands, regardless of valley index, due to their higher electron densities. In addition, we study the effects of electron-phonon coupling on the quasiparticle scattering rate of four distinct spin-valley locked subbands. The results of our calculations predict a general enhancement in the scattering rate for all subbands and a jump in the case of spin-down states. This sharp increase associated with the damping of hybrid plasmon modes is almost absent in the uncoupled case. The results suggest an effective way for manipulating collective modes of valley-spin-polarized silicene which may become useful in future valleytronic and spintronic applications.
dc.description.provenanceMade available in DSpace on 2019-02-21T16:03:57Z (GMT). No. of bitstreams: 1 Bilkent-research-paper.pdf: 222869 bytes, checksum: 842af2b9bd649e7f548593affdbafbb3 (MD5) Previous issue date: 2018en
dc.identifier.doi10.1103/PhysRevB.98.045429
dc.identifier.issn2469-9950
dc.identifier.urihttp://hdl.handle.net/11693/50148
dc.language.isoEnglish
dc.publisherAmerican Physical Society
dc.relation.isversionofhttps://doi.org/10.1103/PhysRevB.98.045429
dc.source.titlePhysical Review Ben_US
dc.titlePlasmon-phonon coupling in a valley-spin-polarized two-dimensional electron system: a theoretical study on monolayer siliceneen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Plasmon-phonon_coupling_in_a_valley-spin-polarized_two-dimensional_electron_system_A_theoretical_study_on_monolayer_silicene.pdf
Size:
1.55 MB
Format:
Adobe Portable Document Format
Description:
Full printable version