Which algebraic K3 surfaces doubly cover an enriques surface: a computational approach
buir.advisor | Sertöz, Ali Sinan | |
dc.contributor.author | Yörük, Oğuzhan | |
dc.date.accessioned | 2019-02-27T08:15:12Z | |
dc.date.available | 2019-02-27T08:15:12Z | |
dc.date.copyright | 2019-02 | |
dc.date.issued | 2019-02 | |
dc.date.submitted | 2019-02-25 | |
dc.description | Cataloged from PDF version of article. | en_US |
dc.description | Includes bibliographical references (leaves 40-41). | en_US |
dc.description.abstract | The relationship between K3 Surfaces and Enriques Surfaces is known to mathematicians for the last 30 years. We examined this relationship from a lattice theoretical point of view by looking at transcendental lattice of a K3 surface in the case of Picard number 18 and 19. We established a better way of attacking this problem with the help of a computer assistance. | en_US |
dc.description.provenance | Submitted by Betül Özen (ozen@bilkent.edu.tr) on 2019-02-27T08:15:11Z No. of bitstreams: 1 oguzhan yoruk - ms thesis refno=10237844.pdf: 434014 bytes, checksum: 26809033cc842ea6dbb45ef11e5eaf30 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2019-02-27T08:15:12Z (GMT). No. of bitstreams: 1 oguzhan yoruk - ms thesis refno=10237844.pdf: 434014 bytes, checksum: 26809033cc842ea6dbb45ef11e5eaf30 (MD5) Previous issue date: 2019-02 | en |
dc.description.statementofresponsibility | by Oğuzhan Yörük | en_US |
dc.format.extent | ix, 89 leaves ; 30 cm. | en_US |
dc.identifier.itemid | B159830 | |
dc.identifier.uri | http://hdl.handle.net/11693/50635 | |
dc.language.iso | English | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | K3 surfaces | en_US |
dc.subject | Picard number | en_US |
dc.subject | Enriques surfaces | en_US |
dc.subject | Lattice | en_US |
dc.title | Which algebraic K3 surfaces doubly cover an enriques surface: a computational approach | en_US |
dc.title.alternative | Hangi cebirsel K3 yüzeyleri enriques yüzeyini örter: hesaplamalı yaklaşım | en_US |
dc.type | Thesis | en_US |
thesis.degree.discipline | Mathematics | |
thesis.degree.grantor | Bilkent University | |
thesis.degree.level | Master's | |
thesis.degree.name | MS (Master of Science) |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- oguzhan yoruk - ms thesis refno=10237844.pdf
- Size:
- 423.84 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: