Fast multipole method for the solution of electromagnetic scattering problems

Date

2003

Editor(s)

Advisor

Gürel, Levent

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

The fast multipole method (FMM) is investigated in detail for the solution of electromagnetic scattering problems involving arbitrarily shaped three-dimensional conducting surfaces. This method is known to reduce the computational complexity and the memory requirement of the solution without sacrificing the accuracy. Therefore, it achieves the solution of large problems with less computational resources compared to the other traditional solution algorithms. However, the expected efficiency of the FMM may not be obtained unless the appropriate choices of the components are made. The types of the employed integral equation, iterative algorithm, and preconditioning technique directly affect the efficiency of the implementations. Performances of these components are also related to each other, and their simultaneous optimization creates a challenging task in the design of an efficient solver.

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)