KO-rings and J-groups of lens spaces

Date

1998

Editor(s)

Advisor

Dibağ, İbrahim

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
6
views
26
downloads

Series

Abstract

In this thesis, we make the explicit computation of the real A'-theory of lens spaces and making use of these results and Adams conjecture, we describe their .7-groups in terms of generators and relations. These computations give nice by-products on some geometrical problems related to lens spaces. We show that J-groups of lens spaces approximate localized J-groups of complex projective spaces. We also make connections of the J-cornputations with the classical cross-section problem and the .James numbers conjecture. Many difficult geometric problems remain open. The results are related to some arithmetic on representations of cyclic groups o\er fields and the Atiyah-Segal isomormhisrn. Eventually, we are interested in representations over rings, in connection with Algebraic K-theory. This turns out to lie a very non-trivial arithmetic problem related to number theory.

Course

Other identifiers

Book Title

Degree Discipline

Mathematics

Degree Level

Doctoral

Degree Name

Ph.D. (Doctor of Philosophy)

Citation

Published Version (Please cite this version)