Complete list of Darboux integrable chains of the form t 1 x = t x + d ( t, t 1 )

Date

2009

Authors

Habibullin, I.
Zheltukhina, N.
Pekcan, A.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Journal of Mathematical Physics

Print ISSN

0022-2488

Electronic ISSN

Publisher

Volume

50

Issue

10

Pages

102710-1 - 102710-23

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
1
views
12
downloads

Series

Abstract

We study differential-difference equation (d/dx) t (n+1,x) =f (t (n,x),t (n+1,x), (d/dx) t (n,x)) with unknown t (n,x) depending on continuous and discrete variables x and n. Equation of such kind is called Darboux integrable, if there exist two functions F and I of a finite number of arguments x, { t (n+k,x) } k=-∞ ∞, {(dk /d xk) t (n,x) } k=1 ∞, such that Dx F=0 and DI=I, where D x is the operator of total differentiation with respect to x and D is the shift operator: Dp (n) =p (n+1). Reformulation of Darboux integrability in terms of finiteness of two characteristic Lie algebras gives an effective tool for classification of integrable equations. The complete list of Darboux integrable equations is given in the case when the function f is of the special form f (u,v,w) =w+g (u,v). © 2009 American Institute of Physics.

Course

Other identifiers

Book Title

Keywords

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)