Kelvin-Möbius-invariant harmonic function spaces on the real unit ball

Available
The embargo period has ended, and this item is now available.

Date

2021-05-07

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Journal of Mathematical Analysis and Applications

Print ISSN

0022-247X

Electronic ISSN

1096-0813

Publisher

Elsevier

Volume

503

Issue

1

Pages

1 - 23

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
2
views
6
downloads

Series

Abstract

We define the Kelvin-Möbius transform of a function harmonic on the unit ball of Rn and determine harmonic function spaces that are invariant under this transform. When n ≥ 3, in the category of Banach spaces, the minimal Kelvin-Möbius-invariant space is the Bergman-Besov space b1−(1+n/2) and the maximal invariant space is the Bloch space b∞(n−2)/2. There exists a unique strictly Kelvin-Möbius-invariant Hilbert space, and it is the Bergman-Besov space b2−2. There is a unique Kelvin-Möbius invariant Hardy space.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)