Kelvin-Möbius-invariant harmonic function spaces on the real unit ball
Date
2021-05-07
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Journal of Mathematical Analysis and Applications
Print ISSN
0022-247X
Electronic ISSN
1096-0813
Publisher
Elsevier
Volume
503
Issue
1
Pages
1 - 23
Language
English
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
2
views
views
6
downloads
downloads
Series
Abstract
We define the Kelvin-Möbius transform of a function harmonic on the unit ball of Rn and determine harmonic function spaces that are invariant under this transform. When n ≥ 3, in the category of Banach spaces, the minimal Kelvin-Möbius-invariant space is the Bergman-Besov space b1−(1+n/2) and the maximal invariant space is the Bloch space b∞(n−2)/2. There exists a unique strictly Kelvin-Möbius-invariant Hilbert space, and it is the Bergman-Besov space b2−2. There is a unique Kelvin-Möbius invariant Hardy space.