On the optimality of stochastic signaling under an average power constraint
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
In this paper, stochastic signaling is studied for scalar valued binary communications systems over additive noise channels in the presence of an average power constraint. For a given decision rule at the receiver, the effects of using stochastic signals for each symbol instead of conventional deterministic signals are investigated. First, sufficient conditions are derived to determine the cases in which stochastic signaling can or cannot outperform the conventional signaling. Then, statistical characterization of the optimal signals is provided and it is obtained that an optimal stochastic signal can be represented by a randomization of at most two different signal levels for each symbol. In addition, via global optimization techniques, the solution of the generic optimal stochastic signaling problem is obtained, and theoretical results are investigated via numerical examples. ©2010 IEEE.