Vector invariants of permutation groups in characteristic zero

buir.contributor.authorSezer , Müfit
buir.contributor.orcidSezer, Müfit|0000-0002-6704-5399
dc.citation.epage2350111-8en_US
dc.citation.spage2350111-1
dc.contributor.authorReimers, F.
dc.contributor.authorSezer, Müfit
dc.date.accessioned2024-03-20T06:09:48Z
dc.date.available2024-03-20T06:09:48Z
dc.date.issued2023-12-21
dc.departmentDepartment of Mathematics
dc.description.abstractWe consider a finite permutation group acting naturally on a vector space V over a field k. A well-known theorem of G¨obel asserts that the corresponding ring of invariants k[V ] G is generated by the invariants of degree at most `dim V 2 ´ . In this paper, we show that if the characteristic of k is zero, then the top degree of vector coinvariants k[V m]G is also bounded above by `dim V 2 ´ , which implies the degree bound `dim V 2 ´ + 1 for the ring of vector invariants k[V m] G. So, G¨obel’s bound almost holds for vector invariants in characteristic zero as well.
dc.description.provenanceMade available in DSpace on 2024-03-20T06:09:48Z (GMT). No. of bitstreams: 1 Vector_invariants_of_permutation_groups_in_characteristic_zero.pdf: 311082 bytes, checksum: 0cdc1b3ef225680d5f5d94072cb0334f (MD5) Previous issue date: 2023-12-21en
dc.identifier.doi10.1142/S0129167X23501112
dc.identifier.eissn1793-6519
dc.identifier.issn0129-167X
dc.identifier.urihttps://hdl.handle.net/11693/114993
dc.language.isoEnglish
dc.publisherWorld Scientific Publishing Co. Pte. Ltd.
dc.relation.isversionofhttps://dx.doi.org/10.1142/S0129167X23501112
dc.source.titleInternational Journal of Mathematics
dc.subjectInvariant theory
dc.subjectPermutation groups
dc.subjectVector invariants
dc.titleVector invariants of permutation groups in characteristic zero
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Vector_invariants_of_permutation_groups_in_characteristic_zero.pdf
Size:
301.74 KB
Format:
Adobe Portable Document Format