On power serieshaving sectionswith multiply positive coefficients

dc.citation.epage866en_US
dc.citation.issueNumber9en_US
dc.citation.spage853en_US
dc.citation.volumeNumber47en_US
dc.contributor.authorZheltukhina, N. A.en_US
dc.date.accessioned2019-02-04T11:07:35Z
dc.date.available2019-02-04T11:07:35Z
dc.date.issued2002-03-15en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractPolya’s theorem of 1913 says that if all sections of power series have real negative zeros only, then the series converges in the whole complex plane and its sum satisfies a certain growth condition. Here we show that the assertion of Po´ lya’s theorem remains valid for a much larger class of formal power series and, moreover, a better growth estimate holds.en_US
dc.description.provenanceSubmitted by Burcu Böke (tburcu@bilkent.edu.tr) on 2019-02-04T11:07:34Z No. of bitstreams: 1 On_power_series_having_sections_with_multiply_positive_coefficients.pdf: 290514 bytes, checksum: e6124785b4ffc7d9fb6c9d065e79cdfe (MD5)en
dc.description.provenanceMade available in DSpace on 2019-02-04T11:07:35Z (GMT). No. of bitstreams: 1 On_power_series_having_sections_with_multiply_positive_coefficients.pdf: 290514 bytes, checksum: e6124785b4ffc7d9fb6c9d065e79cdfe (MD5) Previous issue date: 2002-03-15en
dc.identifier.doi10.1080/02781070290032234en_US
dc.identifier.eissn1563-5066
dc.identifier.issn0278-1077
dc.identifier.urihttp://hdl.handle.net/11693/48793
dc.language.isoEnglishen_US
dc.publisherTaylor & Francisen_US
dc.relation.isversionofhttps://doi.org/10.1080/02781070290032234en_US
dc.source.titleComplex Variablesen_US
dc.subjectM - times positive sequenceen_US
dc.subjectPower seriesen_US
dc.subjectSectionsen_US
dc.titleOn power serieshaving sectionswith multiply positive coefficientsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
On_power_series_having_sections_with_multiply_positive_coefficients.pdf
Size:
283.71 KB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: