Toward a generalized shapiro and shapiro conjecture
dc.citation.epage | 79 | en_US |
dc.citation.spage | 67 | en_US |
dc.citation.volumeNumber | 296 | en_US |
dc.contributor.author | Degtyarev, Alex | en_US |
dc.contributor.editor | Itenberg, I. | |
dc.contributor.editor | Jöricke, B. | |
dc.contributor.editor | Passare, M. | |
dc.coverage.spatial | Stockholm, Sweden | en_US |
dc.date.accessioned | 2018-04-12T13:53:40Z | |
dc.date.available | 2018-04-12T13:53:40Z | |
dc.date.issued | 2012 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description | Conference Name: A Marcus Wallenberg Symposium on Perspectives in Analysis, Geometry, and Topology, 2008 | |
dc.description | Date of Conference: 19-25 May 2008 | |
dc.description.abstract | We obtain a new, asymptotically better, bound g ≤ 1/4 d2 on the genus of a curve that may violate the generalized total reality conjecture. The bound covers all known cases except g = 0 (the original conjecture). | en_US |
dc.identifier.doi | 10.1007/978-0-8176-8277-4_4 | en_US |
dc.identifier.doi | 10.1007/978-0-8176-8277-4 | |
dc.identifier.eisbn | 9780817682774 | |
dc.identifier.isbn | 9780817682767 | |
dc.identifier.issn | 0743-1643 | |
dc.identifier.uri | http://hdl.handle.net/11693/38343 | |
dc.language.iso | English | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Perspectives in analysis, geometry, and topology: on the occasion of the 60th birthday of Oleg Viro | |
dc.relation.ispartofseries | Progress in Mathematics, 296 | |
dc.relation.isversionof | http://dx.doi.org/10.1007/978-0-8176-8277-4_4 | en_US |
dc.relation.isversionof | https://doi.org/10.1007/978-0-8176-8277-4 | |
dc.subject | Alexandermodule | en_US |
dc.subject | Discriminant form | en_US |
dc.subject | Real variety | en_US |
dc.subject | Shapiro and shapiro conjecture | en_US |
dc.title | Toward a generalized shapiro and shapiro conjecture | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Toward_a_generalized_shapiro_and_shapiro_conjecture.pdf
- Size:
- 172 KB
- Format:
- Adobe Portable Document Format
- Description: