IRT-based classification analysis of an english language reading proficiency subtest

buir.contributor.authorKaya, Elif
buir.contributor.authorO’Grady, Stefan
buir.contributor.authorKalender, İlker
buir.contributor.orcidKaya, Elif | 0000-0002-0482-1338
buir.contributor.orcidO’Grady, Stefan| 0000-0003-3810-713X
buir.contributor.orcidKalender| İlker 0000-0003-1282-4149
dc.citation.epage566en_US
dc.citation.issueNumber4en_US
dc.citation.spage541en_US
dc.citation.volumeNumber39en_US
dc.contributor.authorKaya, Elif
dc.contributor.authorO’Grady, Stefan
dc.contributor.authorKalender, İlker
dc.date.accessioned2023-02-15T12:30:37Z
dc.date.available2023-02-15T12:30:37Z
dc.date.issued2022
dc.departmentEnglish Language Preparatory Programen_US
dc.description.abstractLanguage proficiency testing serves an important function of classifying examinees into different categories of ability. However, misclassification is to some extent inevitable and may have important consequences for stakeholders. Recent research suggests that classification efficacy may be enhanced substantially using computerized adaptive testing (CAT). Using real data simulations, the current study investigated the classification performance of CAT on the reading section of an English language proficiency test and made comparisons with the paper based version of the same test. Classification analysis was carried out to estimate classification accuracy (CA) and classification consistency (CC) by applying different locations and numbers of cutoff points. The results showed that classification was suitable when a single cutoff score was used, particularly for high- and low-ability test takers. Classification performance declined significantly when multiple cutoff points were simultaneously employed. Content analysis also raised important questions about construct coverage in CAT. The results highlight the potential for CAT to serve classification purposes and outline avenues for further research.en_US
dc.description.provenanceSubmitted by Mandana Moftakhari (mandana.mir@bilkent.edu.tr) on 2023-02-15T12:30:37Z No. of bitstreams: 1 IRT-based_classification_analysis_of_an_English_language_reading_proficiency_subtest.pdf: 591737 bytes, checksum: 4a7b338ea4c48b9c06eedf36a4d654b5 (MD5)en
dc.description.provenanceMade available in DSpace on 2023-02-15T12:30:37Z (GMT). No. of bitstreams: 1 IRT-based_classification_analysis_of_an_English_language_reading_proficiency_subtest.pdf: 591737 bytes, checksum: 4a7b338ea4c48b9c06eedf36a4d654b5 (MD5) Previous issue date: 2022en
dc.identifier.doi10.1177/02655322211068847en_US
dc.identifier.eissn1477-0946
dc.identifier.issn0265-5322
dc.identifier.urihttp://hdl.handle.net/11693/111356
dc.language.isoEnglishen_US
dc.publisherSAGEen_US
dc.relation.isversionofhttps://dx.doi.org/10.1177/02655322211068847en_US
dc.source.titleLanguage Testingen_US
dc.subjectclassification accuracyen_US
dc.subjectclassification consistencyen_US
dc.subjectcomputerized adaptive testingen_US
dc.subjectlanguage proficiencyen_US
dc.subjectRudner approachen_US
dc.titleIRT-based classification analysis of an english language reading proficiency subtesten_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
IRT-based_classification_analysis_of_an_English_language_reading_proficiency_subtest.pdf
Size:
577.87 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: