Laser photochemical nanostructuring of silicon for surface enhanced raman spectroscopy

buir.contributor.authorDemir, Ahmet Kemal
buir.contributor.orcidDemir, Ahmet Kemal|0000-0002-3251-9793
dc.citation.epage2200114- 9en_US
dc.citation.issueNumber14en_US
dc.citation.spage2200114- 1en_US
dc.citation.volumeNumber10en_US
dc.contributor.authorAkbıyık, A.
dc.contributor.authorAvishan, N.
dc.contributor.authorDemirtaş, Ö.
dc.contributor.authorDemir, Ahmet Kemal
dc.contributor.authorYüce, E.
dc.contributor.authorBek, A.
dc.date.accessioned2023-02-27T14:02:42Z
dc.date.available2023-02-27T14:02:42Z
dc.date.issued2022-07-18
dc.departmentDepartment of Physicsen_US
dc.description.abstractIn this work, a novel method of fabricating large-area, low-cost surface-enhanced Raman spectroscopy (SERS) substrates is explained which yields nanostructured surface utilizing laser-induced chemical etching of crystalline silicon (Si) in an hydrofluoric acid solution. Nanostructuring of Si surface is followed by deposition of a thin noble metal layer to complete the fabrication procedure. A 50 nm thick silver (Ag) layer is shown to maximize the SERS performance. The SERS effect is attributed to the electromagnetic field enhancement originating from the nanoscale surface roughness of Si that can be controlled by the illumination power, etch duration, and the spot size of the laser beam. The SERS substrates are found to be capable of detecting a Raman analyte dye molecule down to 10−11 m. SERS performance of the Ag deposited substrates are compared to gold (Au) deposited substrates at 660 and 532 nm excitation. Nanostructured Si surface with Ag exhibits stronger SERS than with Au under 532 nm excitation exhibiting an enhancement factor as high as 109. Raman enhancement factor is calculated both by SERS spectra experimentally, and using finite-elements simulation of the electric field enhancement. The applicability of the fabricated substrates is examined by adsorbing different analytes.en_US
dc.description.provenanceSubmitted by Ezgi Uğurlu (ezgi.ugurlu@bilkent.edu.tr) on 2023-02-27T14:02:42Z No. of bitstreams: 1 Laser_photochemical_nanostructuring_of_silicon_for_surface_enhanced_raman_spectroscopy.pdf: 3129433 bytes, checksum: b23d16304a2159a5585b89907de1329b (MD5)en
dc.description.provenanceMade available in DSpace on 2023-02-27T14:02:42Z (GMT). No. of bitstreams: 1 Laser_photochemical_nanostructuring_of_silicon_for_surface_enhanced_raman_spectroscopy.pdf: 3129433 bytes, checksum: b23d16304a2159a5585b89907de1329b (MD5) Previous issue date: 2022-07-18en
dc.identifier.doi10.1002/adom.202200114en_US
dc.identifier.eissn2195-1071
dc.identifier.urihttp://hdl.handle.net/11693/111838
dc.language.isoEnglishen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.relation.isversionofhttps://dx.doi.org/10.1002/adom.202200114en_US
dc.source.titleAdvanced Optical Materialsen_US
dc.subjectDigital micro-mirror devicesen_US
dc.subjectEtchingen_US
dc.subjectPhotochemistryen_US
dc.subjectSiliconen_US
dc.subjectSurface enhanced Raman spectroscopyen_US
dc.titleLaser photochemical nanostructuring of silicon for surface enhanced raman spectroscopyen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Laser_photochemical_nanostructuring_of_silicon_for_surface_enhanced_raman_spectroscopy.pdf
Size:
2.98 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: