The predictor role of the aqueduct cerebrospinal fluid flow on endoscopic third ventriculostomy: explication on assumption physical model

buir.contributor.authorDana, Aykutlu
dc.citation.epage969en_US
dc.citation.issueNumber6en_US
dc.citation.spage963en_US
dc.citation.volumeNumber28en_US
dc.contributor.authorAnık, İ.en_US
dc.contributor.authorAnık, Y.en_US
dc.contributor.authorÇabuk, B.en_US
dc.contributor.authorDana, Aykutluen_US
dc.contributor.authorGökbel, A.en_US
dc.contributor.authorÖzdamar, D.en_US
dc.contributor.authorÇırak, M.en_US
dc.contributor.authorCeylan, S.en_US
dc.date.accessioned2019-02-21T16:09:20Zen_US
dc.date.available2019-02-21T16:09:20Zen_US
dc.date.issued2018en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractAIM: To evaluate the cerebrospinal fluid (CSF) flow dynamics in the aqueductus sylvii of patients with obstructive hydrocephalus who underwent endoscopic third ventriculostomy (ETV) and to predict ventriculostomy patency via aqueduct flow measurements. MATERIAL and METHODS: Twenty-four patients with obstructive hydrocephalus caused by primary aqueduct stenosis who underwent ETV were included in the study. All the patients underwent conventional and cine magnetic resonance imaging before and after treatment. The flow of CSF in the aqueduct of Sylvius and prepontine cistern was assessed, and the diameter of the third ventricle was also measured. Increase in the aqueduct flow velocity after a successful ETV was supported by the assumption physical model that highlights a possible mechanism that explains the clinical findings. RESULTS: The flow pattern and velocity in the prepontine cistern and aqueduct were normal in 17 out of 24 patients who responded to ETV clinically. However, seven patients who did not respond to ETV had an abnormal flow pattern in both the prepontine cistern and aqueduct. CONCLUSION: The flow pattern in the aqueduct was normalised and velocity was increased compared with those of preoperative values after a successful ETV. The flow of CSF in the prepontine cistern is routinely used for ventriculostomy patency assessment. In addition, aqueduct measurements may be useful in predicting ventriculostomy patency. The physical model provides valuable insights on a possible mechanism that affected the experimental data.en_US
dc.identifier.doi10.5137/1019-5149.JTN.22169-17.2en_US
dc.identifier.issn1019-5149en_US
dc.identifier.urihttp://hdl.handle.net/11693/50456en_US
dc.language.isoEnglishen_US
dc.publisherTurkish Neurosurgical Societyen_US
dc.relation.isversionofhttps://doi.org/10.5137/1019-5149.JTN.22169-17.2en_US
dc.source.titleTurkish Neurosurgeryen_US
dc.subjectAqueductal stenosisen_US
dc.subjectCine-MRIen_US
dc.subjectEndoscopic third ventriculostomyen_US
dc.subjectObstructive hydrocephalusen_US
dc.titleThe predictor role of the aqueduct cerebrospinal fluid flow on endoscopic third ventriculostomy: explication on assumption physical modelen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The_predictor_role_of_the_aqueduct_cerebrospinal_ fluid_flow_on_endoscopic_third_ventriculostomy.pdf
Size:
392.68 KB
Format:
Adobe Portable Document Format
Description:
Full printable version