CoDet : a new algorithm for containment and near duplicate detection in text corpora

Date

2012

Editor(s)

Advisor

Aykanat, Cevdet

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
3
views
14
downloads

Series

Abstract

In this thesis, we investigate containment detection, which is a generalized version of the well known near-duplicate detection problem concerning whether a document is a subset of another document. In text-based applications, there are three way of observing document containment: exact-duplicates, near-duplicates, or containments, where first two are the special cases of containment. To detect containments, we introduce CoDet, which is a novel algorithm that focuses particularly on containment problem. We also construct a test collection using a novel pooling technique, which enables us to make reliable judgments for the relative effectiveness of algorithms using limited human assessments. We compare its performance with four well-known near duplicate detection methods (DSC, full fingerprinting, I-Match, and SimHash) that are adapted to containment detection. Our algorithm is especially suitable for streaming news. It is also expandable to different domains. Experimental results show that CoDet mostly outperforms the other algorithms and produces remarkable results in detection of containments in text corpora.

Course

Other identifiers

Book Title

Degree Discipline

Computer Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)