On the real, rational, bounded, unit interpolation problem in ℋ∞ and its applications to strong stabilization
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
One of the most challenging problems in feedback control is strong stabilization, i.e. stabilization by a stable controller. This problem has been shown to be equivalent to finding a finite dimensional, real, rational and bounded unit in 𝐻∞ satisfying certain interpolation conditions. The problem is transformed into a classical Nevanlinna–Pick interpolation problem by using a predetermined structure for the unit interpolating function and analysed through the associated Pick matrix. Sufficient conditions for the existence of the bounded unit interpolating function are derived. Based on these conditions, an algorithm is proposed to compute the unit interpolating function through an optimal solution to the Nevanlinna–Pick problem. The conservatism caused by the sufficient conditions is illustrated through strong stabilization examples taken from the literature.