Neural network-based target differentiation using sonar for robotics applications

dc.citation.epage442en_US
dc.citation.issueNumber4en_US
dc.citation.spage435en_US
dc.citation.volumeNumber16en_US
dc.contributor.authorBarshan, B.en_US
dc.contributor.authorAyrulu, B.en_US
dc.contributor.authorUtete, S. W.en_US
dc.date.accessioned2019-02-04T17:41:05Z
dc.date.available2019-02-04T17:41:05Z
dc.date.issued2000-08en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractThis study investigates the processing of sonar signals using neural networks for robust differentiation of commonly encountered features in indoor robot environments. The neural network can differentiate more targets with higher accuracy, improving on previously reported methods. It achieves this by exploiting the identifying features in the differential amplitude and time-of-flight (TOF) characteristics of these targets. Robustness tests indicate that the amplitude information is more crucial than TOF for reliable operation. The study suggests wider use of neural networks and amplitude information in sonar-based mobile robotics.en_US
dc.identifier.doi10.1109/70.864239en_US
dc.identifier.issn1042–296X
dc.identifier.urihttp://hdl.handle.net/11693/48823
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttps://doi.org/10.1109/70.864239en_US
dc.source.titleIEEE Transactions on Robotics and Automationen_US
dc.subjectArtificial neural networksen_US
dc.subjectEvidential reasoningen_US
dc.subjectLearningen_US
dc.subjectMajority votingen_US
dc.subjectSensor data fusionen_US
dc.subjectSonar sensingen_US
dc.subjectTarget classificationen_US
dc.subjectTarget differentiationen_US
dc.subjectTarget localizationen_US
dc.subjectUltrasonic transducers.en_US
dc.titleNeural network-based target differentiation using sonar for robotics applicationsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Neural_network-based_target_differentiation_using_sonar_for_robotics_applications.pdf
Size:
208.09 KB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: