N structure for type-II superlattice photodetectors

Series

Abstract

In the quest to raise the operating temperature and improve the detectivity of type II superlattice (T2SL) photodetectors, we introduce a design approach that we call the "N structure." N structure aims to improve absorption by manipulating electron and hole wavefunctions that are spatially separated in T2SLs, increasing the absorption while decreasing the dark current. In order to engineer the wavefunctions, we introduce a thin AlSb layer between InAs and GaSb layers in the growth direction which also acts as a unipolar electron barrier. Unlike the symmetrical insertion of AlSb into GaSb layers, N design aims to exploit the shifting of the electron and hole wavefunctions under reverse bias. With cutoff wavelength of 4.3 mu m at 77 K, temperature dependent dark current and detectivity measurements show that the dark current density is 3.6 x 10(-9) A/cm(2), under zero bias. Photodetector reaches background limited infrared photodetection (BLIP) condition at 125 K with the BLIP detectivity (D-BLIP*) of 2.6 x 10(10) Jones under 300 K background and -0.3 V bias voltage.

Source Title

Applied Physics Letters

Publisher

American Institute of Physics

Course

Other identifiers

Book Title

Keywords

Inas/gasb Superlattices, Photodiodes

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English