Deformations of some biset-theoretic categories

Date

2020-09

Editor(s)

Advisor

Barker, Laurence John

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
6
views
34
downloads

Series

Abstract

We define the subgroup category, a category on the class of finite groups where the morphisms are given by the subgroups of the direct products and the composition is the star product. We also introduce some of its deformations and provide a criteria for their semisimplicity. We show that biset category can be realized as an invariant subcategory of the subgroup category, where the composition is much simpler. With this correspondence, we obtain some of the deformations of the biset category. We further our methods to the fibred biset category by introducing the subcharacter partial category. Similarly, we also realize the fibred biset category and some of its deformations in a category where the composition is more easily described.

Course

Other identifiers

Book Title

Degree Discipline

Mathematics

Degree Level

Doctoral

Degree Name

Ph.D. (Doctor of Philosophy)

Citation

Published Version (Please cite this version)