On lower degree bounds for vector invariants over finite fields

Date

2000

Editor(s)

Advisor

Stepanov, S.A.

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
1
views
3
downloads

Series

Abstract

The purpose of this thesis is to obtain a lower degree bound in modular invariant theory for a special case. More precisely, let G be any group and k be a finite field of positive characteristic p such that p divides |G| . We prove that if an invariant which has degree at most p —1 with respect to each variable can be written as a polynomial in orbit sums of monomials, then the invariant ring of m copies of the vector space V over k with dimV = n requires a generator of degree ^ ^ ^ provided that m > n where t and rii depends on the representation of G such that |'^'| < t < n + l and 2 < ni < p.

Course

Other identifiers

Book Title

Degree Discipline

Mathematics

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)