On the absence of stability of bases in some Fréchet spaces

buir.contributor.authorGoncharov, Alexander
dc.citation.epage768en_US
dc.citation.issueNumber4en_US
dc.citation.spage761en_US
dc.citation.volumeNumber46en_US
dc.contributor.authorGoncharov, Alexander
dc.date.accessioned2021-02-27T19:41:34Z
dc.date.available2021-02-27T19:41:34Z
dc.date.issued2020-08
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe show that, for each compact subset of the real line of infinite cardinality with an isolated point, the space of Whitney jets on the set does not possess a basis consisting only of polynomials. On the other hand, polynomials are dense in any Whitney space. Thus, there are no general results about stability of bases in Fréchet spaces.en_US
dc.description.provenanceSubmitted by Evrim Ergin (eergin@bilkent.edu.tr) on 2021-02-27T19:41:34Z No. of bitstreams: 1 On_the_absence_of_stability_of_bases_in_some_Fréchet_spaces.pdf: 177737 bytes, checksum: 092321df2eccccd5340e83935349b21f (MD5)en
dc.description.provenanceMade available in DSpace on 2021-02-27T19:41:34Z (GMT). No. of bitstreams: 1 On_the_absence_of_stability_of_bases_in_some_Fréchet_spaces.pdf: 177737 bytes, checksum: 092321df2eccccd5340e83935349b21f (MD5) Previous issue date: 2020-08en
dc.identifier.doi10.1007/s10476-020-0056-4en_US
dc.identifier.issn0133-3852
dc.identifier.urihttp://hdl.handle.net/11693/75631
dc.language.isoEnglishen_US
dc.publisherSpringer Science and Business Media B.V.en_US
dc.relation.isversionofhttps://dx.doi.org/10.1007/s10476-020-0056-4en_US
dc.source.titleAnalysis Mathematicaen_US
dc.subjectPolynomial baseen_US
dc.subjectStability of basesen_US
dc.subjectTopological baseen_US
dc.subjectWhitney spaceen_US
dc.titleOn the absence of stability of bases in some Fréchet spacesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
On_the_absence_of_stability_of_bases_in_some_Fréchet_spaces.pdf
Size:
173.57 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: