Multi-contrast MRI synthesis with channel-exchanging-network

buir.contributor.authorDalmaz, Onat
buir.contributor.authorAytekin, İdil
buir.contributor.authorDar, Salman Ul Hassan
buir.contributor.authorÇukur, Tolga
buir.contributor.orcidDar, Salman Ul Hassan|0000-0002-7603-4245
buir.contributor.orcidÇukur, Tolga|0000-0002-2296-851X
dc.citation.epage[4]en_US
dc.citation.spage[1]en_US
dc.contributor.authorDalmaz, Onat
dc.contributor.authorAytekin, İdil
dc.contributor.authorDar, Salman Ul Hassan
dc.contributor.authorErdem, Aykut
dc.contributor.authorErdem, Erkut
dc.contributor.authorÇukur, Tolga
dc.coverage.spatialSafranbolu, Turkeyen_US
dc.date.accessioned2023-02-15T10:33:19Z
dc.date.available2023-02-15T10:33:19Z
dc.date.issued2022-08-29
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionConference Name: 2022 30th Signal Processing and Communications Applications Conference (SIU)en_US
dc.descriptionDate of Conference: 15-18 May 2022en_US
dc.description.abstractMagnetic resonance imaging (MRI) is used in many diagnostic applications as it has a high soft-tissue contrast and is a non-invasive medical imaging method. MR signal levels differs according to the parameters T1, T2 and PD that change with respect to the chemical structure of the tissues. However, long scan times might limit acquiring images from multiple contrasts or if the multi-contrasts images are acquired, the contrasts are noisy. To overcome this limitation of MRI, multi-contrast synthesis can be utilized. In this paper, we propose a deep learning method based on Channel-Exchanging-Network (CEN) for multi-contrast image synthesis. Demonstrations are provided on IXI dataset. The proposed model based on CEN is compared against alternative methods based on CNNs and GANs. Our results show that the proposed model achieves superior performance to the competing methods.en_US
dc.description.provenanceSubmitted by Betül Özen (ozen@bilkent.edu.tr) on 2023-02-15T10:33:19Z No. of bitstreams: 1 Multi-Contrast_MRI_Synthesis_with_Channel-Exchanging-Network.pdf: 1547111 bytes, checksum: f46847198365ed7f3ef2ae043c320182 (MD5)en
dc.description.provenanceMade available in DSpace on 2023-02-15T10:33:19Z (GMT). No. of bitstreams: 1 Multi-Contrast_MRI_Synthesis_with_Channel-Exchanging-Network.pdf: 1547111 bytes, checksum: f46847198365ed7f3ef2ae043c320182 (MD5) Previous issue date: 2022-08-29en
dc.identifier.doi10.1109/SIU55565.2022.9864937en_US
dc.identifier.eisbn978-1-6654-5092-8
dc.identifier.issn2165-0608
dc.identifier.urihttp://hdl.handle.net/11693/111325
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttps://www.doi.org/10.1109/SIU55565.2022.9864937en_US
dc.source.titleSignal Processing and Communications Applications Conference (SIU)en_US
dc.subjectMultimodal fusionen_US
dc.subjectChannel-exchanging-networken_US
dc.subjectMulti-contrast image synthesisen_US
dc.subjectDeep learningen_US
dc.titleMulti-contrast MRI synthesis with channel-exchanging-networken_US
dc.title.alternativeÇoklu-kontrast MRG’de kanal-değişim-ağı ile görüntü sentezien_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Multi-Contrast_MRI_Synthesis_with_Channel-Exchanging-Network.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: