Rapid and sensitive colorimetric ELISA using silver nanoparticles, microwaves and split ring resonator structures

buir.contributor.authorÖzbay, Ekmel
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.epage164en_US
dc.citation.issueNumber3en_US
dc.citation.spage155en_US
dc.citation.volumeNumber2en_US
dc.contributor.authorAddae, S.A.en_US
dc.contributor.authorPinard, M.A.en_US
dc.contributor.authorCaglayan H.en_US
dc.contributor.authorCakmakyapan, S.en_US
dc.contributor.authorCaliskan, D.en_US
dc.contributor.authorÖzbay, Ekmelen_US
dc.contributor.authorAslan, K.en_US
dc.date.accessioned2016-02-08T09:55:35Z
dc.date.available2016-02-08T09:55:35Z
dc.date.issued2010en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractWe report a new approach to colorimetric Enzyme-Linked Immunosorbent Assay (ELISA) that reduces the total assay time to < 2 min and the lower-detection-limit by 100-fold based on absorbance readout. The new approach combines the use of silver nanoparticles, microwaves and split ring resonators (SRR). The SRR structure is comprised of a square frame of copper thin film (30 μm thick, 1 mm wide, overall length of ~9.4 mm on each side) with a single split on one side, which was deposited onto a circuit board (2×2 cm 2). A single micro-cuvette (10 μl volume capacity) was placed in the split of the SRR structures. Theoretical simulations predict that electric fields are focused in and above the micro-cuvette without the accumulation of electrical charge that breaks down the copper film. Subsequently, the walls and the bottom of the micro-cuvette were coated with silver nanoparticles using a modified Tollen's reaction scheme. The silver nanoparticles served as a mediator for the creation of thermal gradient between the bioassay medium and the silver surface, where the bioassay is constructed. Upon exposure to low power microwave heating, the bioassay medium in the micro-cuvette was rapidly and uniformly heated by the focused electric fields. In addition, the creation of thermal gradient resulted in the rapid assembly of the proteins on the surface of silver nanoparticles without denaturing the proteins. The proof-of-principle of the new approach to ELISA was demonstrated for the detection of a model protein (biotinylated-bovine serum albumin, b-BSA). In this regard, the detection of b-BSA with bulk concentrations (1 μM to 1 pM) was carried out on commercially available 96-well high throughput screening (HTS) plates and silver nanoparticle-deposited SRR structures at room temperature and with microwave heating, respectively. While the room temperature bioassay (without microwave heating) took 70 min to complete, the identical bioassay took < 2 min to complete using the SRR structures (with microwave heating). A lower detection limit of 0.01 nM for b-BSA (100-fold lower than room temperature ELISA) was observed using the SRR structures. © 2010 S.A. Addae et al.en_US
dc.identifier.issn21505578
dc.identifier.urihttp://hdl.handle.net/11693/22105
dc.language.isoEnglishen_US
dc.source.titleNano Biomedicine and Engineeringen_US
dc.subjectBioassaysen_US
dc.subjectELISAen_US
dc.subjectImmunoassaysen_US
dc.subjectSilver colloidsen_US
dc.subjectSilver island filmsen_US
dc.titleRapid and sensitive colorimetric ELISA using silver nanoparticles, microwaves and split ring resonator structuresen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rapid and sensitive colorimetric ELISA using silver nanoparticles, microwaves and split ring resonator structures.pdf
Size:
2.4 MB
Format:
Adobe Portable Document Format
Description:
Full printable version