Retinal proteins as model systems for membrane protein folding

dc.citation.epage663en_US
dc.citation.issueNumber5en_US
dc.citation.spage656en_US
dc.citation.volumeNumber1837en_US
dc.contributor.authorTastan, O.en_US
dc.contributor.authorDutta, A.en_US
dc.contributor.authorBooth, P.en_US
dc.contributor.authorKlein-Seetharaman, J.en_US
dc.date.accessioned2018-04-12T13:44:57Z
dc.date.available2018-04-12T13:44:57Z
dc.date.issued2014en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.description.abstractExperimental folding studies of membrane proteins are more challenging than water-soluble proteins because of the higher hydrophobicity content of membrane embedded sequences and the need to provide a hydrophobic milieu for the transmembrane regions. The first challenge is their denaturation: due to the thermodynamic instability of polar groups in the membrane, secondary structures in membrane proteins are more difficult to disrupt than in soluble proteins. The second challenge is to refold from the denatured states. Successful refolding of membrane proteins has almost always been from very subtly denatured states. Therefore, it can be useful to analyze membrane protein folding using computational methods, and we will provide results obtained with simulated unfolding of membrane protein structures using the Floppy Inclusions and Rigid Substructure Topography (FIRST) method. Computational methods have the advantage that they allow a direct comparison between diverse membrane proteins. We will review here both, experimental and FIRST studies of the retinal binding proteins bacteriorhodopsin and mammalian rhodopsin, and discuss the extension of the findings to deriving hypotheses on the mechanisms of folding of membrane proteins in general. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T13:44:57Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2014en
dc.identifier.doi10.1016/j.bbabio.2013.11.021en_US
dc.identifier.issn0005-2728
dc.identifier.urihttp://hdl.handle.net/11693/38121
dc.language.isoEnglishen_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.bbabio.2013.11.021en_US
dc.source.titleBiochimica et Biophysica Acta. Bioenergeticsen_US
dc.subjectSecondaryen_US
dc.subjectDenatured statesen_US
dc.subjectMembrane proteinen_US
dc.subjectRetinalen_US
dc.subjectRetinoid binding proteinen_US
dc.subjectDenaturationen_US
dc.subjectHydrophobicityen_US
dc.subjectMammalen_US
dc.subjectNonhumanen_US
dc.subjectPriority journalen_US
dc.subjectProtein analysisen_US
dc.subjectProtein secondary structureen_US
dc.subjectProtein structureen_US
dc.subjectProtein unfoldingen_US
dc.subjectReviewen_US
dc.subjectSimulationen_US
dc.subjectTopographyen_US
dc.subjectCanis familiarisen_US
dc.subjectMammaliaen_US
dc.subjectBacteriorhodopsinen_US
dc.subjectMembrane protein foldingen_US
dc.subjectEuryarchaeotaen_US
dc.subjectHumansen_US
dc.subjectHydrophobic and hydrophilic interactionsen_US
dc.subjectKineticsen_US
dc.subjectMolecular dynamics simulationen_US
dc.subjectProtein denaturationen_US
dc.subjectProtein foldingen_US
dc.subjectProtein refoldingen_US
dc.subjectRetinaldehydeen_US
dc.subjectRhodopsinen_US
dc.subjectStructural homologyen_US
dc.subjectThermodynamicsen_US
dc.titleRetinal proteins as model systems for membrane protein foldingen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Retinal proteins as model systems for membrane protein folding.pdf
Size:
968.77 KB
Format:
Adobe Portable Document Format
Description:
Full printable version